AGC Hydrogen Production and Analysis Solutions

Gas Analysis at %, ppm and ppb levels

Hydrogen (H_2) is a clean source of energy at the point of use and offers many benefits and uses in the global drive to become carbon neutral. As a result, Hydrogen production is being scaled up rapidly to meet the demands of clean energy and the decarbonisation of heavy industry. AGC Instruments offers an array of quality control solutions for measuring the impurities in each of the production technologies used. This ensures high purity supplies and the best possible outputs from the use of Hydrogen.

With its vast array of industrial uses, Hydrogen is primarily used in the following processes:

Ammonia Production: H_2 reacts with N_2 in an iron catalyst at 450°C and 20MPa pressure. Refinery Process: Used in the removal of sulphur contained in crude oil in order to

create various products such as gasoline, jet fuel and heating oil.

Electronics: Used as a carrier gas for active trace elements (arsine and phosphine).

Glass: Required to prevent the oxidation of the large tin baths.

Food: Hydrogenation of liquid oils to convert them to semi-solid materials.

form a solid) of many powder metallurgy parts.

Metal Sintering: Pure H_2 is often used for the high-temperature sintering (i.e. the thermal fusing of powders in compaction to

Hydrogen Cell Technologies and Space Propulsion.

Scientific Use: Laboratory Based Usage.

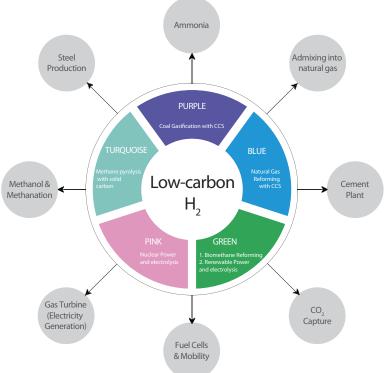
Energy:

Hydrogen can be produced in several different ways but, traditionally and economically, the best processes involve the removal of hydrogen from hydrocarbons. This is done primarily by 'Steam Reforming' of natural gas by reacting natural gas or methane (CH_4) with steam in a reformer. In the process of reforming natural gas or methane to hydrogen, carbon monoxide (CO_2) and carbon dioxide (CO_2) are created as by-products. Both CO_2 adversely affect catalysts in many refining and chemical processes. Therefore, the removal and measurement of CO_2 and CO_3 on a continuous basis is required before the hydrogen can be used in these processes.

However, in the push towards carbon neutrality, Hydrogen itself must be produced through low-carbon means. Newer electrolysis technologies are emerging which are powered by green energy sources such as Wind and Solar to create 'Green Hydrogen'. For example, Polymer Electrolyte Membrane (PEM) electrolysis is the electrolysis of water to separate Hydrogen from the Oxygen atoms.

One of the largest advantages to PEM electrolysis is its ability to operate at high current densities. Therefore, it is more conducive to working with energy sources such as wind and solar which may have sudden spikes in energy input due to their unpredictable nature. The polymer electrolyte also has a low gas crossover rate resulting in a higher purity Hydrogen output, which is important for direct usage in a fuel cells. AGC Instruments' product ranges and solutions can verify this higher purity and ensure the validity of the process employed.

AGC Instruments can supply either Gas Analyser or Gas Chromatograph/Process Gas Chromatograph solutions with fully certified purge/pressurisation systems (for hazardous Zone 1 and Zone 2 applications) to monitor impurities at all stages of the Hydrogen Production processes. These analytical solutions will ensure increased efficient production and higher quality supplies thereby reducing downstream problems.


novaPRO 5000

nova**stream 6000**

www.agc-instruments.com

Sample Points Analysis Overview

Sample Point A - Stream Analysis (Production Process & Distribution)

N3.5 up to N5.0 H₂

- Direct Response
- Shortest Possible Reaction Time
- Limited Number of Impurities

		J. A.				
三丁	RE/	NM	600	\supset \subset		

Wall Mount Gas Analyser

Model & Typical Range	$N_{_2}$	THC	CO	CO ₂	O ₂ /H ₂ O
NovaSTREAM 6000-TCD (% Analyser)	/		✓		
NovaSTREAM 6000-TCD (500 ppm to low %)	/				
NovaSTREAM 6000-TCD (2 - 500 ppm)	√				Different Monitors Available Upon
NovaSTREAM 6000-FID (Low %)		/			Demand
NovaSTREAM 6000-FID (ppm)		1			2 smarra
NovaSTREAM 6000-FID (ppm with methaniser)		1	/	1	

^{*}Other Ranges available on demand

Sample Point B & C - Stream Analysis (Production Control)

N3.5 up to N5.0 H₂

- Direct Response
- Shortest Possible Reaction Time
- · Limited Number of Impurities

nova**STREAM 6000**

Model & Typical Range	N_2	THC	CO	CO ₂	O ₂ / H ₂ O
NovaSTREAM 6000-TCD (500 ppm to low %)	✓				
NovaSTREAM 6000-TCD (2 - 500 ppm)	√				Different Monitors
NovaSTREAM 6000-FID (ppm)		/			Available Upon Demand
NovaSTREAM 6000-FID (ppm with methaniser)		/	√	√	Demand

^{*}Other Ranges available on demand

Sample Point B & C - Gas Chromatography Analysis (Production Control & Distribution)

N3.5 up to N5.0 H₂

- Detection of Specific Impurities
- Typical Analysis Time: 3 5 Minutes
- No interference by Matrix Gas and Moisture when combined with stream analysers

Model	Ar/O ₂	N ₂	CH ₄	CO	CO ₂	O_2/H_2O
NovaCHROM/PRO FID (ppm)			1	1	1	Different Monitors Available Upon
NovaCHROM/PRO TCD (ppm)	✓	1	1	1	*Extended Run Time	Demand

Sample Point B & C - Gas Chromatography Analysis (Production Control & Distribution)

N5.0 up to N6.0 H₃

- Trace Level Detection of Specific Impurities
- Typical Analysis Time: 5 10 Minutes
- No interference by Matrix Gas and Moisture

					110001	-RO 7000
Model	Ar/O ₂	N_2	CH ₄	CO	CO ₂	O ₂ / H ₂ O
NovaCHROM/PRO DID Low ppb to Mid ppm	1	1	1	/	1	
NovaCHROM/PRO FID Low ppb to Mid ppm			1	1	1	Different Monitors Available Upon Demand
NovaCHROM/PRO TCD ppm	1	1	1			

Gas Chromatography Analysis Overview

N3.5 / N4.0 / N5.0

- · Single Run or Automated Analysis
- Specific Impurities

Model	Impurities Measured	Analysis Time	Minimum detectable level (MDL)
NovaCHROM/PRO FID	CH ₄ , CO, CO ₂	≤ 5 minutes	++
NovaCHROM/PRO TCD	Ar, N ₂ , CH ₄ , CO	3 - 5 minutes	+
NovaCHROM/PRO FID-TCD	Ar, N_2, CH_4, CO, CO_2	5 minutes	++

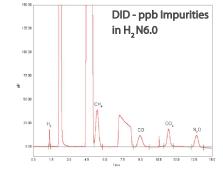
N5.0 / N6.0

- Single Run or Automated Analysis
- Specific Impurities
- Low ppb MDL

Model	Impurities Measured	Analysis Time	Minimum detectable level (MDL)
NovaCHROM/PRO DID	Ar/O_2 , N_2 , CH_4 , CO , CO_2	≤ 12 minutes	++
NovaCHROM/PRO DID-DID	Ar/O_2 , N_2 , CH_4 , CO , CO_2	≤ 5 minutes	+++
NovaCHROM/PRO DID-FID	Ar/O_2 , N_2 , CH_4 , CO , CO_2	≤ 5 minutes	+++
NovaCHROM/PRO DID-FID	Ar/O_2 , N_2 , CH_4 , CO , CO_2 , THC	≤ 10 minutes	+++

Detectors

Discharge Ionisation Detector


(DID)

Based on using a non-radioactive, universal and concentration-dependent design, the detector generates high energy photons through an electrical discharge in Helium. The metastable Helium then ionises all components except Helium.

Typical Carrier Gas: He

H₂ Applications: ppm , ppb (by using single or multiple column ovens and

specific chromatography techniques)

Flame Ionisation Detector

(FID)

The presence of hydrocarbons is detectable by burning the sampled gas in an air-hydrogen flame. Burning just pure hydrogen with air produces only small amounts of ionisation and thus the presence of hydrocarbons causes increased levels of ionisation. A catalyst such as a Methaniser Module can be used for CO/CO_2 readings.

Typical Carrier Gas: H₂, Ar (recommended) or He (if combined with a DID) H₂ Applications: ppm, ppb (by using single or dual column ovens and

pre-column techniques)

Thermal Conductivity Detector

(TCD)

Four sensing elements are connected to form an electrical Wheatstone bridge circuit. An electrical current from a regulated power source heats the elements and changes in thermal conductivity of the sample gas result in an output voltage change.

Typical Carrier Gas: H₂ N5.0 (for % to high ppm range)

or H₂ N6.0 (for low ppm range)

H₂ Applications: % and ppm using single or dual column oven techniques.

AGC Technology

Pre-Column Technique

Prevents contamination by moisture or less volatile impurities (e.g. a leaking compressor) to protect analytical columns. Used for all Process Gas Chromatographs.

Backflush Technique

Speeds up analysis by back-flushing unwanted components and sending the components of interest straight to the detector.

Heartcut Technique

The Heartcut technique removes the matrix gas (H₂) from the trace DID detector as opposed to all the analytes being sent to the analytical column(s) and then into the DID detector.

Hydrogen Removal System

Using a palladium membrane technology, the AGC Hydrogen Removal System removes Hydrogen from a sample stream and is an alternative to the Heartcut technique and by default is used for the analysis of H₂ to N6.0 purity.

TrendVision PLUS Software

TrendVision PLUS is the latest version of the well recognised Chromatography Data Capture Software from AGC Instruments. It has been developed following careful consultation with our customers so that it is easy to use and set up.

Rugged industrial level modular and scalable hardware is used with an Embedded Windows Operating System. Once your system is installed, usage in the daily environment is very easy with minimal training required. It encompasses all the important functions required in this demanding gas analysis environment, enabling many standard features to provide excellent chromatography results and straightforward reporting. Furthermore, the ability to integrate outputs from third party gas analysers offers much flexibility for reporting.

TrendVision PLUS provides a unified chromatography method whereby all settings are contained in a single method, including event tables, calibration tables and integration settings. In addition, this software enables the GC systems to run in a fully unattended mode. It can also take control of the GC systems and automatically perform the required analysis using the pre-programmed methods. This is coupled with the ability to send results back to a DCS or control room using fieldbus protocols or traditional 4-20 mA signalling. If On-Line operation is not required then the software runs equally well in its Stand-Alone mode with the same functionality and ease of use.

Company Profile

AGC Instruments

AGC Instruments is a leading manufacturer of Gas Analysis Solutions to all users requiring a Quality Control or identification of their gas stream. We have over 50 years experience in providing our customers with their "Total Gas Analysis Solutions".

ATEX & IECEX

Zone 1 ATEX Certification

NovaPRO 9000 Certificate No.: CSANe 20ATEX1111X NovaSTREAM 6000 Certificate No.: CSANe 20ATEX1120X

CSA Group Netherlands Certifying Body:

Equipment Marking:

II 2G Ex pxb IIB+H2 T3 Gb

Zone 2 ATEX Certification

Certificate Number: CSANe 20 ATEX M803

Certifying Body: **CSA Group Netherlands**

Equipment Marking:

II 3G Ex pzc IIB+H2 T3 Gc

Zone 1 & 2 IECEx Certification

NovaPRO 9000 Certificate No.: NovaSTREAM 6000 Certificate No.: Equipment Marking Zone 1: Equipment Marking Zone 2:

IECEx SIR 20.0039X IECEx SIR 20.0040X Ex pxb IIB+H2 T3 Gb Ex pzc IIB+H2 T3 Gc

Flexible & Versatile Solutions

High Sensitivity Analysis

AGC Headquarters

Unit 2, Shannon Free Zone West, Shannon, Co. Clare, V14 PX03, Ireland T: +353 61 471632 F: +353 61 471042 E: sales@agc-instruments.com

